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Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality
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Using computer databases of scientific papers in physics, biomedical research, and computer science, we
have constructed networks of collaboration between scientists in each of these disciplines. In these networks
two scientists are considered connected if they have coauthored one or more papers together. Here we study a
variety of nonlocal statistics for these networks, such as typical distances between scientists through the
network, and measures of centrality such as closeness and betweenness. We further argue that simple networks
such as these cannot capture variation in the strength of collaborative ties and propose a measure of collabo-
ration strength based on the number of papers coauthored by pairs of scientists, and the number of other
scientists with whom they coauthored those papers.
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I. INTRODUCTION

In the preceding paper@1#, we studied collaboration net
works of scientists in which two scientists are conside
connected if they have coauthored one or more scien
papers together. As we argued, these networks are for
most part true acquaintance networks, since it is likely tha
pair of scientists who have coauthored a paper together
personally acquainted. And since the publication record
scientists is well documented in a variety of publicly ava
able electronic databases, construction of large and relati
complete networks is possible by automated means. Th
networks provide a promising source of real-world data
fuel the current surge of research interest in social netw
structure within the physics community.

The networks studied in Ref.@1# were constructed using
four publicly available bibliographic databases: Medlin
which covers research in biology and medicine; the Los A
mos e-Print Archive, which covers experimental and theo
ical physics; the Stanford Public Information Retrieval Sy
tem ~SPIRES!, which covers experimental and theoretic
high-energy physics; and the Networked Computer Scie
Technical Reference Library~NCSTRL!, which covers com-
puter science. A broad selection of basic statistics were
culated for these networks, including typical numbers of
thors per paper, papers per author, and collaborators
author, as well as distributions of these quantities, existe
and size of a giant component, and degree of network c
tering. In this second paper, we turn to some more soph
cated, mostly nonlocal, network measures.

II. DISTANCES AND CENTRALITY

In this section, we look at some measures of netw
structure having to do with paths between vertices in
network. These measures are aimed at understanding the
terns of connection and communication between scient
In Sec. III we discuss some shortcomings of these measu
and construct some more complex measures that may b
reflect true connection patterns.
1063-651X/2001/64~1!/016132~7!/$20.00 64 0161
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A. Shortest paths

A fundamental concept in graph theory is the ‘‘geod
sic,’’ or shortest path of vertices and edges that links t
given vertices. There may not be a unique geodesic betw
two vertices: there may be two or more shortest paths, wh
may or may not share some vertices. The geodesic~s! be-
tween two verticesi and j can be calculated using the fo
lowing algorithm, which is a modified form of the standa
breadth-first search@2#.

~1! Assign vertexj distance zero, to indicate that it is zer
steps away from itself, and setd←0.

~2! For each vertexk whose assigned distance isd, follow
each attached edge to the vertexl at its other end and, ifl has
not already been assigned a distance, assign it distand
11. Declarek to be a predecessor ofl.

~3! If l has already been assigned distanced11, then
there is no need to do this again, butk is still declared a
predecessor ofl.

~4! Setd←d11.
~5! Repeat from step 2 until there are no unassigned v

tices left.
Now the shortest path~if there is one! from i to j is the

path you get by stepping fromi to its predecessor, and the
to the predecessor of each successive vertex untilj is
reached. If a vertex has two or more predecessors, then t
are two or more shortest paths, each of which must be
lowed separately if we wish to know all shortest paths fro
i to j.

In the standard implementation of this algorithm, a que
~i.e., a first-in/first-out buffer! is maintained of vertices
whose distances have been assigned, but whose atta
edges have not yet been followed. Using a queue elimin
the need in step 2 above to search through all vertices
those at distanced, and allows the algorithm to run to
completion in timeO(m), wherem is the number of edges in
the graph. We note also that the algorithm as we have
scribed it allows us to calculate the shortest paths fromall
vertices to the targetj in a single run, and not just from th
single vertexi that we were originally interested in. Thus w
can calculaten shortest paths in timeO(m), wheren is the
©2001 The American Physical Society32-1
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M. E. J. NEWMAN PHYSICAL REVIEW E 64 016132
number of vertices in the graph. In Fig. 1 we show the sh
est paths of collaborations in the Los Alamos Archive, c
culated using the algorithm above, between two of the
thor’s colleagues, who are represented by the vertices lab
A andB. One point worthy of note is that, although the tw
scientists in question both work on social networks of va
ous kinds, the shortest path between them does not run
tirely through other collaborations in the field. For examp
the vertex labeledC in the figure represents the present a
thor, and my connections toD andE derive from papers on
topics unconnected with networks or graph theory. Althou
this may at first sight appear odd, it is probably in fact a go
sign. It indicates that workers in the field come from diffe
ent scientific ‘‘camps,’’ rather than all descending intellec
ally from a single group or institution. This presumably i
creases the likelihood that those workers will expre
independent opinions on the open questions of the field.

A database that would allow one conveniently a
quickly to extract shortest paths between scientists in
way might have some practical use. Kautzet al. @3# have
constructed a web-based system which does just this
computer scientists, with the idea that such a system m
help people to make new professional contacts by provid
a ‘‘referral chain’’ of intermediate scientists through who
contact may be established.

B. Betweenness and funneling

A quantity of interest in many social network studies
the ‘‘betweenness’’ of an actori, which is defined as the tota
number of shortest paths between pairs of actors that
through i @4#. This quantity is an indicator of who the mo
influential people in the network are, the ones who con
the flow of information between most others. The vertic
with highest betweenness also result in the largest increa
typical distance between others when they are removed@5#.

Naively, one might think that betweenness would ta
time of orderO(mn2) to calculate for all vertices, since ther

FIG. 1. Geodesics, or shortest paths, in the collaboration
work between the two scientists labeledA andB.
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are O(n2) shortest paths to be considered, each of wh
takes timeO(m) to calculate. However, since breadth-fir
search algorithms can calculaten shortest paths in time
O(m), it seems possible that one might be able to calcu
betweenness for all vertices in timeO(mn). Here we present
a simple algorithm that performs this calculation. Bei
enormously faster than the simpleO(mn2) method, it makes
possible exhaustive calculation of betweenness on the
large graphs studied here. The algorithm is as follows.

~1! The shortest paths to a vertexj from every other ver-
tex are calculated using breadth-first search as descr
above, taking timeO(m).

~2! A variablebk , taking the initial value 1, is assigned t
each vertexk.

~3! Going through the verticesk in order of their distance
from j, starting from the farthest, the value ofbk is added to
the corresponding variable on the predecessor vertex ofk. If
k has more than one predecessor, thenbk is divided equally
between them. This means that, if there are two shor
paths between a pair of vertices, the vertices along th
paths are given a betweenness of1

2 each.
~4! When we have gone through all vertices in this fas

ion, the resulting values of the variablesbk represent the
number of geodesic paths to vertexj that run through each
vertex on the lattice, with the end points of each path be
counted as part of the path. To calculate the betweennes
all paths, thebk are added to a running score maintained
each vertex and the entire calculation is repeated for eac
the n possible values ofj. The final running scores are pre
cisely the betweennesses of each of then vertices.

Using this algorithm we have been able to calculate
tweenness exhaustively for all scientists in our networks
reasonable running time.@For example, the calculation fo
the Los Alamos Archive takes about two hours on a curr
~circa 2000! workstation.# One particularly notable featur
of the results is that the betweenness measure gives
clear winners among the scientists in the network: the in
viduals with highest betweenness are well ahead of th
with second highest, who are in turn well ahead of those w
third highest, and so on. This same phenomenon has b
noted in other social networks@5#.

Strogatz@6# has raised an interesting question about so
networks which we can address using our betweenness a
rithm: are all of your collaborators equally important fo
your connection to the rest of the world, or do most pa
from others to you pass through just a few of your collab
rators? One could certainly imagine that the latter might
true. Collaboration with just one or two senior or famo
members of one’s field could easily establish short paths
large part of the collaboration network, and all of those sh
paths would go through those one or two members. Strog
calls this effect ‘‘funneling.’’ Since our algorithm, as a pa
of its operation, calculates the vertices through which e
geodesic path to a specified actori passes, it is a trivial
modification to calculate also how many of those geode
paths pass through each of the immediate collaborator
that actor, and hence to use it to look for funneling.

Our collaboration networks, it turns out, show strong fu
neling. For most people, their top few collaborators lie

t-
2-2
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SCIENTIFIC COLLABORATION NETWORKS . . . . II. . . . PHYSICAL REVIEW E 64 016132
most of the paths between themselves and the rest of
network. The rest of their collaborators, no matter how n
merous, account for only a small number of paths. Consi
for example, the present author. Out of the 44 000 scien
in the giant component of the Los Alamos Archive collab
ration network, 31 000 paths from them to me, about 70
pass through just two of my collaborators, while anoth
13 000, most of the remainder, pass through the next f
The remaining five collaborators account for a mere 1%
the total.~These and all other results presented in this pa
were calculated using the ‘‘all initials’’ versions of our ne
works, as described in Ref.@1#, except where otherwise
noted.!

To give a more quantitative impression of the funneli
effect, we show in Fig. 2 the fraction of paths that pa
through the top 10 collaborators of an author, averaged o
all authors in the giant component of the Los Alamos da
base. The figure shows, for example, that on average 64%
one’s shortest paths to other scientists pass through o
top-ranked collaborator. Another 17% pass through
second-ranked one. The top 10 shown in the figure acco
for 98% of all paths.

That one’s top few acquaintances account for most
one’s shortest paths to the rest of the world has been n

FIG. 2. The average percentage of paths from other scientis
a given scientist that pass through each collaborator of that scie
ranked in decreasing order. The plot is for the Los Alamos Arch
network, although similar results are found for other networks.
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before in other contexts. For example, Milgram, in his f
mous ‘‘small world’’ experiment@7#, noted that most of the
paths he found to a particular target person in an acqu
tance network went through just one or two acquaintance
the target. He called these acquaintances ‘‘sociometric su
stars.’’

C. Average distances

Breadth-first search allows us to calculate exhaustiv
the lengths of the shortest paths from every vertex on a gr
to every other~if such a path exists! in time O(mn). We
have done this for each of the networks studied here
averaged these distances to find the mean distance bet
any pair of~connected! authors in each of the subject field
studied. These figures are given in the penultimate row
Table I. As the table shows, these figures are all quite sm
they vary from 4.0 for SPIRES to 9.7 for NCSTRL, althoug
this last figure may be artificially inflated because t
NCSTRL database appears to have poorer coverage o
subject area than the other databases studied here@1#. At any
rate, all the figures are very small compared to the numbe
vertices in the corresponding databases. This ‘‘small wor
effect, first described by Milgram@7#, is, like the existence of
a giant component@1#, probably a good sign for science;
shows that scientific information—discoveries, experimen
results, theories—will not have far to travel through the n
work of scientific acquaintance to reach the ears of th
who can benefit by them. Even themaximumdistances be-
tween scientists in these networks, shown in the last row
Table I, are not very large, the longest path in any of
networks being just 31 steps long, again in the NCST
database, which may have poorer coverage than the oth

The explanation of the small world effect is simple. Co
sider Fig. 3, which shows all the collaborators of the pres
author~in all subjects, not just physics!, and all the collabo-
rators of those collaborators—all my first and second nei
bors in the collaboration network. As the figure shows
have 26 first neighbors, but 623 second neighbors. The ‘
dius’’ of the whole network around me is reached when
number of neighbors within that radius equals the numbe
scientists in the giant component of the network, and if
increase in numbers of neighbors with distance continue
the impressive rate shown in the figure, it will not take ma
steps to reach this point.

to
st,
e

re esti-
n results

L

69
94

)

TABLE I. Some statistics for the collaboration networks studied here. Numbers in parentheses a
mates of the standard errors on the least significant figures, which are based on the difference betwee
for the ‘‘all initials’’ and ‘‘first initial only’’ versions of the networks, as described in Ref.@1#.

Los Alamos e-Print Archive

Medline complete astro-ph cond-mat hep-th SPIRES NCSTR

Total number of papers 2163923 98502 22029 22016 19085 66652 131
Total number of authors 1520251 52909 16706 16726 8361 56627 119

First initial only 1090584 45685 14303 15451 7676 47445 10998
Mean distance 4.6(2) 5.9(2) 4.66(7) 6.4(1) 6.91(6) 4.0(1) 9.7(4
Maximum distance 24 20 14 18 19 19 31
2-3
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M. E. J. NEWMAN PHYSICAL REVIEW E 64 016132
This simple idea is borne out by theory. In almost
networks, the number ofkth nearest neighbors of a typica
vertex increases exponentially withk, and hence the averag
distance between pairs of verticesl scales logarithmically
with n the number of vertices. In a standard random gra
for instance,l 5 logn/logz, wherez is the average degree o
a vertex, the average number of collaborators in our ter
nology @8,9#. In the more general class of random graphs
which the distribution of vertex degrees is arbitrary@10#,
rather than Poissonian as in the standard case, the equiv
expression is@11#

l 5
log~n/z1!

log~z2 /z1!
11, ~1!

wherez1 andz2 are the average numbers of first and seco
neighbors of a vertex. It is highly unlikely that a social ne
work would not show similar logarithmic behavior—
networks that do not are a set of measure zero in the lim
largen. The square lattice, for instance, which does not sh
logarithmic behavior, would be wildly improbable as a t
pology for a social network. And the introduction of even t
smallest amount of randomness into a square lattice or o
regular lattice produces logarithmic behavior in the limit
large system size@12,13#. Thus the small world effect is
hardly a surprise to anyone familiar with graph theory. Ho
ever, it would be nice to demonstrate explicitly the prese
of logarithmic scaling in our networks. Figure 4 does this
a crude fashion. In this figure we have plotted the measu
value of l , as given in Table I, against the value given
Eq. ~1! for each of our four databases, along with separ
points for ten of the subject-specific subdivisions of the L
Alamos Archive. As the figure shows, the correlation b
tween measured and predicted values is quite good
straight-line fit hasR250.86, rising to R250.95 if the

FIG. 3. The point in the center of the figure represents the au
of the paper you are reading, the first ring his collaborators, and
second ring their collaborators. Collaborative ties between mem
of the same ring, of which there are many, have been omitted f
the figure for clarity.
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NCSTRL database, with its incomplete coverage, is exclu
~the diamond-shaped symbol in the figure!.

Figure 4 needs to be taken with a pinch of salt. Its co
struction implicitly assumes that the different networks a
statistically similar to one another and to random graphs w
the same distributions of vertex degree, an assumption th
almost certainly not correct. In practice, however, the m
sured value ofl seems to follow Eq.~1! quite closely. Turn-
ing this observation around, our results also imply that it
possible to make a good prediction of the typical verte
vertex distance in a network by making only local measu
ments of the average numbers of neighbors that vert
have. If this result extends beyond coauthorship network
other social networks, it could be of some importance
empirical work, where the ability to calculate global prope
ties of a network by making only local measurements co
save large amounts of effort.

We can also trivially use our breadth-first search alg
rithm to calculate the average distance from a single ve
to all other vertices in the giant component. This average
essentially the same as the quantity known as ‘‘closeness
social network analysts. Like betweenness it is a measur
some sense, of the centrality of a vertex—authors with l
values of this average will, it is assumed, be the first to le
new information, and information originating with them wi
reach others quicker than information originating with oth
sources. Average distance is thus a measure of centralit
an actor in terms of their access to information, where
betweenness is a measure of an actor’s control over infor
tion flowing between others.

Calculating average distance for many networks retu
results that look sensible to the observer. Calculations for
network of collaborations between movie actors, for
stance, give small average distances for actors who
famous—ones many of us will have heard of@14#. Interest-
ingly, however, performing the same calculation for our s

or
e
rs
m

FIG. 4. Average distance between pairs of scientists in the v
ous networks, plotted against average distance on a random g
of the same size and degree distribution. The dotted line sh
where the points would fall if measured and predicted results ag
perfectly. The solid line is the best straight-line fit to the data.
2-4
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SCIENTIFIC COLLABORATION NETWORKS . . . . II. . . . PHYSICAL REVIEW E 64 016132
entific collaboration networks does not return sensible
sults. For example, one finds that the people at the top of
list are always experimentalists. This, you might think, is n
such a bad thing: perhaps the experimentalists are better
nected people? In a sense, in fact, it turns out that they ar
Fig. 5 we show the average distance from scientists in
Los Alamos Archive to all others in the giant component
a function of their number of collaborators. As the figu
shows, there is a trend toward shorter average distance a
number of collaborators becomes large. This trend is cle
still in the inset, where we show the same data averaged
all authors who have the same number of collaborat
Since experimentalists work in large groups, it is not surp
ing to learn that they tend to have shorter average dista
to other scientists.

But this brings up an interesting question: while mo
pairs of people who have written a paper together will kn
one another reasonably well, there are exceptions. On a h
energy physics paper with 1000 coauthors, for instance,
unlikely that every one of the 499 500 possible acquaintan
ships between pairs of those authors will actually be realiz
Our closeness measure does not take into account the
dency for collaborators in large groups not to know one
other, or to know one another less well, and for this rea
the predominance in the closeness rankings of scientists
work in such large groups is probably misleading. In the n
section we introduce a more sophisticated form of colla
ration network, which allows for this by including a measu
of the strength of collaborative interactions.

III. WEIGHTED COLLABORATION NETWORKS

There is more information present in the databases u
here than in the simple networks we have constructed f
them, which tell us only whether scientists have collabora
or not@15#. In particular, we know on how many papers ea
pair of scientists has collaborated during the period of
study, and how many other coauthors they had on eac
those papers. We can use this information to make an
mate of the strength of collaborative ties.

FIG. 5. Scatter plot of the mean distance from each physicis
the giant component of the Los Alamos Archive network to
others as a function of number of collaborators. Inset: the same
averaged vertically over all authors having the same numbe
collaborators.
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First of all, it is probably the case, as we pointed out at
end of the previous section, that two scientists whose na
appear on a paper together with many other coauthors k
one another less well on average than two who were the
authors of a paper. The extreme case that we discussed
very large collaboration illustrates this point forcefully, b
the same idea applies to smaller collaborations too. Even
a paper with four or five authors, the authors probably kn
one another less well on average than authors from a sm
collaboration. To account for this effect, we weight collab
rative ties inversely according to the number of coauthors
follows. Suppose a scientist collaborates on the writing o
paper that hasn authors in total, i.e., he or she hasn21
coauthors on that paper. Then we assume that he or sh
acquainted with each coauthor 1/(n21) times as well, on
average, as if there were only one coauthor. One can ima
this as meaning that the scientist divides his or her ti
equally between then21 coauthors. This is obviously only
rough approximation: in reality a scientist spends more ti
with some coauthors than with others. However, in the
sence of other data, it is the obvious first approximation
make@16#.

Second, authors who have written many papers toge
will, we assume, know one another better on average t
those who have written few papers together. To account
this, we add together the strengths of the ties derived fr
each of the papers written by a particular pair of individu
@17#. Thus, if d i

k is 1 if scientisti was a coauthor of paperk
and zero otherwise, then our weightwi j representing the
strength of the collaboration~if any! between scientistsi and
j is

wi j 5(
k

d i
kd j

k

nk21
, ~2!

where nk is the number of coauthors of paperk and we
explicitly exclude from our sums all single-author pape
@They do not contribute to the coauthorship network, a
their inclusion in Eq.~2! would makewi j ill defined.# We
illustrate this measure for a simple example in Fig. 6.

Note that the equivalent of vertex degree for our weigh
network—i.e., the sum of the weights for each of an in
vidual’s collaborations—is now just equal to the number
papers they have coauthored with others:

(
j (Þ i )

wi j 5(
k

(
j (Þ i )

d i
kd j

k

nk21
5(

k
d i

k . ~3!

We have used our weighted collaboration graphs to c
culate distances between scientists. In this simple calcula
we assumed that the distance between authors is just
inverse of the weight of their collaborative tie. Thus if on
pair of authors know one another twice as well as anot
pair, the distance between them is half as great. Calcula
minimum distances between vertices on a weighted gr
such as this cannot be done using the breadth-first se
algorithm of Sec. II A, since the shortest weighted path m
not be the shortest in terms of number of steps on the
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M. E. J. NEWMAN PHYSICAL REVIEW E 64 016132
weighted network. Instead we use Dijkstra’s algorithm@18#,
which calculates all distances from a given starting vertei
as follows.

~1! Distances from vertexi are stored for each vertex an
each is labeled ‘‘exact,’’ meaning we have calculated t
distance exactly, or ‘‘estimated,’’ meaning we have made
estimate of the distance, but that estimate may be wrong.
start by assigning an estimated distance of` to all vertices
except vertexi to which we assign an estimated distance
zero. ~We know the latter to be exactly correct, but for th
moment we consider it merely ‘‘estimated.’’!

~2! From the set of vertices whose distances fromi are
currently marked ‘‘estimated,’’ choose the one with the lo
est estimated distance, and mark this ‘‘exact.’’

~3! Calculate the distance from that vertex to each of
immediate neighbors in the network by adding to its dista
the length of the edges leading to those neighbors. Any
these distances that is shorter than a current estimated
tance for the same vertex supersedes that current value
becomes the new estimated distance for the vertex.

~4! Repeat from step 2, until no ‘‘estimated’’ vertices r
main.

A naive implementation of this algorithm takes tim
O(mn) to calculate distances from a single vertex to all o
ers, orO(mn2) to calculate all pairwise distances. One of t
factors ofn, however, arises because it takes timeO(n) to
search through the vertices to find the one with the sma
estimated distance. This operation can be improved by s
ing the estimated distances in a binary heap~a partially or-
dered binary tree with its smallest entry at its root!. We can
find the smallest distance in such a heap in timeO(1), and
add and remove entries in timeO(logn). This reduces the
time for the evaluation of all pairwise distances
O(mn logn), making the calculation feasible for the larg
networks studied here.

It is in theory possible to generalize any of the calcu
tions of Sec. II to the weighted collaboration graph using t
algorithm and variations on it. For example, we can fi
shortest paths between specified pairs of scientists, as a

FIG. 6. AuthorsA andB have coauthored three papers togeth
labeled 1, 2, and 3, which had respectively four, two, and th
authors. The tie betweenA andB accordingly accrues weights 1/3
1, and 1/2 from the three papers, for a total weight of 11/6.
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of establishing referrals, inO(m logn) time. We can calcu-
late the weighted equivalent of betweenness inO(mn logn)
time by a simple adaptation of our fast algorithm of Se
II B—we use Dijkstra’s algorithm to establish the hierarc
of predecessors of vertices and then count paths through
tices exactly as before. We can also study the weighted
sion of the ‘‘funneling’’ effect using the same algorithm. Fo
the moment, we have carried out just one calculation exp
itly to demonstrate the idea; we have calculated the weigh
version of the closeness centrality measure of Sec. II C,
the average weighted distance from a vertex to all oth
The results reveal that, by constrast with the simple clo
ness measure, the list of scientists who are well connecte
this weighted sense is no longer dominated by experimen
ists, although the well connected among them still sc
highly; sheer number of collaborators is no longer a go
predictor of connectedness. For example, the fifth best c
nected scientist in high-energy theory~out of 8000! is found
to have only three collaborators listed in the database,
nonetheless scores highly in our calculation because his
with those three collaborators are strong and because
collaborators are themselves well connected.

Many of the scientists who score highly in this calculati
appear to be well known individuals, at least in the opini
of this author and his colleagues, and are therefore plaus
well connected. We find also that the number of papers w
ten by scientists who are well connected in this particu
sense is universally high. Having coauthored a large num
of papers is, as it rightly should be, always a good way
becoming well connected. Whether you write many pap
with many different authors, or many with a few, writin
many papers will put you in touch with your peers.

IV. CONCLUSIONS

We have studied social networks of scientists in which
actors are authors of scientific papers, and a tie between
authors represents coauthorship of one or more papers.
networks studied were based on publication data from f
databases in physics, biomedical research, and compute
ence. In this second of two papers, we have looked a
variety of nonlocal properties of our networks. We find th
typical distances between pairs of authors through the
works are small—the networks form a ‘‘small world’’ in th
sense discussed by Milgram—and scale logarithmically w
total number of authors in a network, in reasonable agr
ment with the predictions of random graph models. We ha
introduced an algorithm for counting the number of short
paths between vertices on a graph that pass through
other vertex, which is one order of system size faster th
previous algorithms, and used this to calculate the so-ca
‘‘betweenness’’ measure of centrality on our graphs. We a
show that for most authors the bulk of the paths betwe
them and other scientists in the network go through just
or two of their collaborators, an effect that Strogatz h
dubbed ‘‘funneling.’’

We have suggested a measure of the strength of colla
rative ties which takes account of the number of paper
given pair of scientists have written together, as well as
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number of other coauthors with whom they wrote those
pers. Using this measure we have added weightings to
collaboration networks and used the resulting networks
find which scientists have the shortest average distanc
others. Generalization of the betweenness and funneling
culations to these weighted networks is also straightforwa

The calculations presented in this paper and the prece
one inevitably represent only a small part of the investi
tions that could be conducted using large network data
such as these. Indeed, one of the primary intents of this p
is simply to alert other researchers to the presence of a v
able source of network data in bibliographic databases.
hope, given the high current level of interest in network ph
nomena, that others will find many further uses for the
data.

The author recently learned of a report by Brandes@19# in
which an algorithm for calculating betweenness similar
ours is described. The author is grateful to Rick Grannis
bringing this to his attention.
,
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